Thesis – Bibliography

Table of Contents

Bibliography

 W. Horton. Drift waves and transport. Rev. Mod. Phys., 71(3):735-778, Apr 1999. doi: 10.1103/RevModPhys.71.735

 Committee on Solar and Space Physics, Plasma Physics of the Local Cosmos. National Research Council, 2004.

 T.E. Evans, M.E. Fenstermacher, R.A. Moyer, T.H. Osborne, J.G. Watkins, P. Gohil, I. Joseph, M.J. Schaffer, L.R. Baylor, M. Bécoulet, J.A. Boedo, K.H. Burrell, J.S. deGrassie, K.H. Finken, T. Jernigan, M.W. Jakubowski, C.J. Lasnier, M. Lehnen, A.W. Leonard, J. Lonnroth, E. Nardon, V. Parail, O. Schmitz, B. Unterberg, and W.P. West. Rmp elm suppression in diii-d plasmas with iter similar shapes and collisionalities. Nuclear Fusion, 48(2):024002 (10pp), 2008. URL http://stacks.iop.org/0029-5515/48/024002.

 Stanford-Lockheed Institute for Space Research, 2000. URL http://soi.stanford.edu/results/SolPhys200/Schrijver/TRACEpodarchive4.html.

 UKAEA. URL http://www.york.ac.uk/depts/phys/gsp/plasma_projs/fusionplasmas.htm.

 A. T. Burke. Classical Heat Transport and Spontaneous Fluctuations associated with a Temperature Filament in a Magnetized Plasma. PhD thesis, University of California, San Diego, 1999.

 Rolf Landshoff. Transport phenomena in a completely ionized gas in presence of a magnetic field. Phys. Rev., 76(7):904–909, Oct 1949. doi: 10.1103/PhysRev.76.904.

 Lyman Spitzer and Richard Härm. Transport phenomena in a completely ionized gas. Phys. Rev., 89(5):977–981, Mar 1953a. doi: 10.1103/PhysRev.89.977.

 M. N. Rosenbluth and A. N. Kaufman. Plasma diffusion in a magnetic field. Phys. Rev., 109(1):1–5, Jan 1958. doi: 10.1103/PhysRev.109.1.

 S. I. Braginskii. Reviews of plasma physics. In M. A. Leontovich, editor, Reviews of Plasma Physics, volume 1, page 205. Consultants Bureau, New York, 1965.

A. T. Burke, J. E. Maggs, and G. J. Morales. Observation of simultaneous axial and transverse classical heat transport in a magnetized plasma. Phys. Rev. Lett., 81(17):3659–3662, Oct 1998. doi: 10.1103/PhysRevLett.81.3659.

 A. T. Burke, J. E. Maggs, and G. J. Morales. Experimental study of classical heat transport in a magnetized plasma. Physics of Plasmas, 7(2):544–553, 2000b. URL http://link.aip.org/link/?PHP/7/544/1.

A. T. Burke, J. E. Maggs, and G. J. Morales. Experimental study of fluctuations excited by a narrow temperature filament in a magnetized plasma. Physics of Plasmas, 7(5):1397–1407, 2000a. URL http://link.aip.org/link/?PHP/7/1397/1.

 J. R. Peñano, G. J. Morales, and J. E. Maggs. Drift-Alfvén fluctuations associated with a narrow pressure striation. Physics of Plasmas, 7(1):144–157, 2000. URL http://link.aip.org/link/?PHP/7/144/1.

 J. A. Krommes. Fundamental statistical descriptions of plasma turbulence in magnetic fields. Phys. Rep., 360(1-4):1–352, 2002. URL http://www.sciencedirect.com/science/article/B6TVP-44B20YF-1/2/a6228f0e751eeadca209858a8b5fe8b5.

 Francis F. Chen. Spectrum of low-β plasma turbulence. Phys. Rev. Lett., 15(9): 381–383, Aug 1965. doi: 10.1103/PhysRevLett.15.381.

 Kunihiro Kamataki, Yoshihiko Nagashima, Shunjiro Shinohara, Yoshinobu Kawai, Masatoshi Yagi, Kimitaka Itoh, and Sanae-I. Itoh. Coexistence of collisional drift and flute wave instabilities in bounded linear ecr plasma. J. Phys. Soc. Jpn., 76:054501, 2007.

 B Labit, A Diallo, A Fasoli, I Furno, D Ira ji, S H Müller, G Plyushchev, M Podestà, F M Poli, P Ricci, C Theiler, and J Horacek. Statistical properties of electrostatic turbulence in toroidal magnetized plasmas. Plasma Phys. Cont. Fus., 49(12B):B281–B290, 2007. URL http://stacks.iop.org/0741-3335/49/B281.

 M. Škorić and M. Rajković. Characterization of intermittency in plasma edge turbulence. Cont. Plasma Phys., 48(1-3):37–41, 2008. doi: 10.1002/ctpp.200810006.

 V. P. Budaev, S. Masuzaki, T. Morisaki, N. Ohno, N. Asakura, S. Takamura, H. Yamada, and A. Komori. Scaling laws of intermittent plasma turbulence in edge of fusion devices. Plasma Fus. Res., 3:S1019, 2008.

 M. A. Pedrosa, C. Hidalgo, B. A. Carreras, R. Balbín, I. García-Cortés, D. Newman, B. van Milligen, E. Sánchez, J. Bleuel, M. Endler, S. Davies, and G. F. Matthews. Empirical similarity of frequency spectra of the edge-plasma fluctuations in toroidal magnetic-confinement systems. Phys. Rev. Lett., 82(18): 3621–3624, May 1999. doi: 10.1103/PhysRevLett.82.3621.

 U. Stroth, F. Greiner, C. Lechte, N. Mahdizadeh, K. Rahbarnia, and M. Ramisch. Study of edge turbulence in dimensionally similar laboratory plasmas. In 45th Annual Meeting of the APS Division of Plasma Physics, volume 11, pages 2558–2564. AIP, 2004. doi: 10.1063/1.1688789. URL http://link.aip.org/link/?PHP/11/2558/1.

 B. A. Carreras, R. Balbin, B. van Milligen, M. A. Pedrosa, I. Garcia-Cortes, E. Sanchez, C. Hidalgo, J. Bleuel, M. Endler, H. Thomsen, A. Chankin, S. Davies, K. Erents, and G. F. Matthews. Characterization of the frequency ranges of the plasma edge fluctuation spectra. Phys. Plasmas, 6(12):4615– 4621, 1999. doi: 10.1063/1.873748. URL http://link.aip.org/link/?PHP/6/4615/1.

 S J Zweben, J A Boedo, O Grulke, C Hidalgo, B LaBombard, R J Maqueda, P Scarin, and J L Terry. Edge turbulence measurements in toroidal fusion devices. Plasma Phys. Cont. Fus., 49(7):S1–S23, 2007. URL http://stacks.iop.org/0741-3335/49/S1.

 C. M. Tchen. Turbulent motions in an artificial plasma inhomogeneity released in the ionosphere. Plasma Phys., 15:1193–1196, 1973.

 F. S. Kuo and S. Y. Chou. The origin of the dual-slope spectrum from intermediate to transitional scale in equatorial spread f. Chinese J. Phys., 39(6):577–593, 2001.

 L. J. Milano, S. Dasso, W. H. Matthaeus, and C. W. Smith. Spectral distribution of the cross helicity in the solar wind. Phys. Rev. Lett., 93(15):155005, Oct 2004. doi: 10.1103/PhysRevLett.93.155005.

 G. Zimbardo. Magnetic turbulence in space plasmas: in and around the earth’s magnetosphere. Plasma Phys. Cont. Fus., 48(12B):B295–B302, 2006. URL http://stacks.iop.org/0741-3335/48/B295.

 S. D. Bale, P. J. Kellogg, F. S. Mozer, T. S. Horbury, and H. Reme. Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett., 94(21):215002, 2005. doi: 10.1103/PhysRevLett.94.215002. URL http://link.aps.org/abstract/PRL/v94/e215002.

 A.N. Kolmogorov. Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR, 32:16–18, 1941. (reprinted in Proc. Roy. Soc. Lond. A 434, 15-17 (1991)).

 U. Frisch. Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press, 1995.

 K. W. Gentle. Dependence of heat pulse propagation on transport mechanisms: Consequences of nonconstant transport coefficients. Phys. Fluids, 31(5):1105–1110, 1988. doi: 10.1063/1.866790. URL http://link.aip.org/link/?PFL/31/1105/1.

 A. Jacchia, P. Mantica, F. De Luca, and G. Gorini. Determination of diffusive and nondiffusive transport in modulation experiments in plasmas. Phys. Fluids B, 3(11):3033–3040, 1991. doi: 10.1063/1.859781. URL http://link.aip.org/link/?PFB/3/3033/1.

 P. Mantica, D. Van Eester, X. Garbet, F. Imbeaux, L. Laborde, M. Mantsinen, A. Marinoni, D. Mazon, D. Moreau, N. Hawkes, E. Joffrin, V. Kiptily, S. Pinches, A. Salmi, S. Sharapov, A. Thyagara ja, I. Voitsekhovitch, P. de Vries, and K.-D. Zastrow. Probing internal transport barriers with heat pulses in jet. Phys. Rev. Lett., 96(9):095002, 2006. doi: 10.1103/PhysRevLett.96.095002. URL http://link.aps.org/abstract/PRL/v96/e095002.

 Alessandro Casati, P. Mantica, D. Van Eester, N. Hawkes, F. Imbeaux, E. Joffrin, A. Marinoni, F. Ryter, A. Salmi, T. Tala, and P. De Vries JET EFDA contributors. Critical temperature gradient length signatures in heat wave propagation across internal transport barriers in the joint european torus. Phys. Plasmas, 14(9):092303, 2007. doi: 10.1063/1.2772618. URL http://link.aip.org/link/?PHP/14/092303/1.

 Jun Shen and Andreas Mandelis. Thermal-wave resonator cavity. Review of Scientific Instruments, 66(10):4999–5005, 1995. doi: 10.1063/1.1146123. URL http://link.aip.org/link/?RSI/66/4999/1.

 D. W. Forslund. Instabilities associated with heat conduction in the solar wind and their consequences. J. Geophys. Res., 75(1):17–28, 1970.

 V. T. Tikhonchuk, W. Rozmus, V. Yu. Bychenkov, C. E. Cap jack, and E. Epperlein. Return current instability in laser heated plasmas. Phys. Plasmas, 2(11):4169–4173, 1995. doi: 10.1063/1.871041. URL http://link.aip.org/link/?PHP/2/4169/1.

 D. C. Pace, M. Shi, J. E. Maggs, G. J. Morales, and T. A. Carter. Spontaneous thermal waves in a magnetized plasma. Phys. Rev. Lett., 101(3):035003, 2008b. doi: 10.1103/PhysRevLett.101.035003. URL http://link.aps.org/abstract/PRL/v101/e035003.

 H. Xia and M. G. Shats. Inverse energy cascade correlated with turbulent-structure generation in toroidal plasma. Phys. Rev. Lett., 91(15):155001, Oct 2003. doi: 10.1103/PhysRevLett.91.155001.

 G. Fiksel, S. C. Prager, P. Pribyl, R. J. Taylor, and G. R. Tynan. Measurement of magnetic fluctuation induced energy transport in a tokamak. Phys. Rev. Lett., 75(21):3866–3869, Nov 1995. doi: 10.1103/PhysRevLett.75.3866.

 U. Kauschke, G. Oelerich-Hill, and A. Piel. Experimental investigation of coherent drift waves in low magnetic fields. Phys. Fluids B, 2(1):38–43, 1990. doi: 10.1063/1.859537. URL http://link.aip.org/link/?PFB/2/38/1.

 J. E. Maggs and G. J. Morales. Magnetic fluctuations of a large nonuniform plasma column. Phys. Plasmas, 10(6):2267–2277, 2003. doi: 10.1063/1.1572814. URL http://link.aip.org/link/?PHP/10/2267/1.

 D. C. Pace, M. Shi, J. E. Maggs, G. J. Morales, and T. A. Carter. Exponential frequency spectrum in magnetized plasmas. Phys. Rev. Lett., 101(8):085001, 2008a. doi: 10.1103/PhysRevLett.101.085001. URL http://link.aps.org/abstract/PRL/v101/e085001.

 W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs. Design, construction, and properties of the large plasma research device – the lapd at ucla. Review of Scientific Instruments, 62 (12):2875–2883, 1991. URL http://link.aip.org/link/?RSI/62/2875/1.

 I. H. Hutchinson. Principles of Plasma Diagnostics, pages 70–72. Cambridge University Press, second edition, 2002.

 Sin-Li Chen and T. Sekiguchi. Instantaneous direct-display system of plasma parameters by means of triple probe. Journal of Applied Physics, 36(8):2363–2375, 1965. URL http://link.aip.org/link/?JAP/36/2363/1.

 T. Shikama, S. Kado, A. Okamoto, S. Kajita, and S. Tanaka. Practical formula for mach number probe diagnostics in weakly magnetized plasmas. Physics of Plasmas, 12(4):044504, 2005. doi: 10.1063/1.1872895. URL http://link.aip.org/link/?PHP/12/044504/1.

 M. Shi. PhD thesis, University of California, Los Angeles, 2008.

 A. J. Ångström. Neue methode, das wärmeleitungsvermögen der körper zu bestimmen. Ann. Phys. Chem., 190(12):513–530, 1862.

 Andreas Mandelis. Diffusion waves and their uses. Phys. Today, 53(8):29–34, 2000. doi: 10.1063/1.1310118. URL http://link.aip.org/link/?PTO/53/29/1.

 J. A. Balderas-López, A. Mandelis, and J. A. Garcia. Thermal-wave resonator cavity design and measurements of the thermal diffusivity of liquids. Rev. Sci. Inst., 71(7):2933–2937, 2000. doi: 10.1063/1.1150713. URL http://link. aip.org/link/?RSI/71/2933/1.

 M. Bertolotti, G. L. Liakhou, R. Li Voti, S. Paoloni, and C. Sibilia. Thermal wave resonator: In situ investigation by photothermal deflection technique. Int. J. Therm., 19(2):603–613, 1998. doi: 10.1023/A:1022594201473. URL http://www.springerlink.com/content/u000r82364l35733.

 B. Z. Azmi, H. S. Liaw, and Z. Abbas. Thermal-wave interferometry of gas-liquid applied to a thermal-wave resonator cavity technique. Rev. Sci. Inst., 76(7): 074901, 2005. doi: 10.1063/1.1946547. URL http://link.aip.org/link/?RSI/76/074901/1.

 Howard C. Bryant. Heat waves and Ångström’s method. Am. J. Phys., 31(5): 325–327, 1963. doi: 10.1119/1.1969505. URL http://link.aip.org/link/?AJP/31/325/1.

 J. S. Bendat and A. G. Piersol. Random Data: Analysis and Measurement Procedures, page 148. Wiley-Interscience, third edition, 2000.

 D. A. D’Ippolito, J. R. Myra, and S. I. Krasheninnikov. Cross-field blob transport in tokamak scrape-off-layer plasmas. Physics of Plasmas, 9(1):222–233, 2002. doi: 10.1063/1.1426394. URL http://link.aip.org/link/?PHP/9/222/1.

 T. A. Carter. Intermittent turbulence and turbulent structures in a linear magnetized plasma. Physics of Plasmas, 13(1):010701, 2006. doi: 10.1063/1.2158929. URL http://link.aip.org/link/?PHP/13/010701/1.

 Ghassan Y. Antar, Glenn Counsell, Yang Yu, Brian Labombard, and Pascal Devynck. Universality of intermittent convective transport in the scrape-off layer of magnetically confined devices. Phys. Plasmas, 10(2):419–428, 2003. doi: 10.1063/1.1536166. URL http://link.aip.org/link/?PHP/10/419/1.

 J. A. Boedo, D. Rudakov, R. Moyer, S. Krasheninnikov, D. Whyte, G. McKee, G. Tynan, M. Schaffer, P. Stangeby, P. West, S. Allen, T. Evans, R. Fonck, E. Hollmann, A. Leonard, A. Mahdavi, G. Porter, M. Tillack, and G. Antar. Transport by intermittent convection in the boundary of the diii-d tokamak. Physics of Plasmas, 8(11):4826–4833, 2001. URL http://link.aip.org/link/?PHP/8/4826/1.

 S. J. Zweben. Search for coherent structure within tokamak plasma turbulence. Phys. Fluids, 28(3):974–982, 1985. doi: 10.1063/1.865069. URL http://link.aip.org/link/?PFL/28/974/1.

 C. Torrence and G. P. Compo. A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79:61, 1998.

 L. Debnath. Wavelet transformations and their applications. Birkhäuser Boston, 2002.

 M. Farge. Wavelet transforms and their applications to turbulence. ANNUAL REVIEW OF FLUID MECHANICS, 24:395–457, 1992. URL http://link.aip.org/link/?PHP/14/052306/1.

Leave a Reply